
0-7803-7016-3/01/$10.00 ©2001 IEEE

Dynamic Routing of Locally Restorable Bandwidth Guaranteed Tunnels using
Aggregated Link Usage Information

Murali Kodialam T. V. Lakshman

Bell Laboratories
Lucent Technologies

101 Crawfords Corner Road
Holmdel, NJ 07733, USA

fmuralik, lakshmang@bell-labs.com

Abstract—This paper presents new algorithms for dynamic routing of
locally restorable bandwidth guaranteed paths. Dynamic routing implies
routing of requests that arrive one-by-one with no a priori knowledge
of future arrivals, and so necessitating use of on-line algorithms. Local
restorability means that upon a link or node failure, the first node up-
stream from the failure must be able to switch the path to an alternate
preset outgoing link so that path continuity with bandwidth guarantees
is restored by a strictly local decision. The motivation for use of local
restoration is that it is much faster than path restoration because failure
information does not have to propagate to the source. Local restoration
implies that to successfully route a path set-up request an active (pri-
mary) path, and a bypass backup path for every link and node used by
the active path must be determined . This locally restorable on-line rout-
ing problem is becoming particularly important in optical networks and
in MPLS (Multi Protocol Label Switching) based networks due to the
trend toward dynamic provisioning of bandwidth guaranteed or wave-
length paths. To prevent excessive resource usage for backup paths, and
to satisfy the implicit service provider requirement of optimizing net-
work resource utilization so as to increase the number of potential future
demands that can be routed, it is desirable to judiciously share backup
paths while still maintaining local restorability. The best sharing perfor-
mance is achieved if the routing of every path in progress in the network
is known to the routing algorithm at the time of a new path set-up. How-
ever, this requires maintenance of non-aggregated or per-path informa-
tion which is not often desirable particularly when distributed routing is
preferred. We show that a partial information scenario which uses only
aggregated and not per-path information provides sufficient information
for efficient dynamic routing of locally restorable bandwidth guaranteed
paths. In this partial information scenario the routing algorithm only
knows what fraction of each link’s bandwidth, is currently used by active
paths, and is currently used by backup paths. Obtaining this informa-
tion is feasible using proposed traffic engineering extensions to routing
protocols. We develop efficient dynamic routing algorithms for band-
width guaranteed paths that are locally restorable under single link or
node failure. The routing is done using a sequence of shortest path com-
putations, and it permits sharing of backup paths between requests as
well as between the backup paths for different network elements for the
same request. We compare the routing performance of our algorithm
to other known restoration schemes. Our partial information based lo-
cally restorable algorithm performs very well in terms of the number of
rejected requests and total bandwidth usage.

I. INTRODUCTION

The locally restorable dynamic routing problem considered
in this paper is motivated by trends in backbone and transport
networks toward dynamic provisioning of bandwidth guaran-
teed paths with fast restoration capability. An important con-
text in which such fast restoration has been proposed is in
Multi-Protocol-Label-Switching (MPLS) [3], [1],[7],[6],[8]
and in this paper, for ease of exposition, we mostly focus

on Multi-Protocol-Label-Switching (MPLS) or MPLS-related
applications. However, the presented algorithms are also
usable in other networking applications requiring dynamic
restorable bandwidth provisioning.

In MPLS [3] packets are encapsulated, at ingress points,
with labels that are then used to forward the packets along la-
bel switched paths (LSPs). These LSPs can be thought of as
virtual traffic trunks that carry flow aggregates generated by
classifying the packets arriving at the edge or ingress routers
of an MPLS network into “forwarding equivalence classes”
[3]. This classification into flow aggregates combined with
explicit routing of bandwidth guaranteed LSPs enables ser-
vice providers to traffic engineer their networks [1] and to dy-
namically provision bandwidth guaranteed paths. Recently,
proposals [7], [8], [11] have been made to incorporate restora-
tion mechanisms in MPLS. These restoration mechanisms al-
low backup paths, onto which traffic can be quickly redi-
rected upon failure detection, to be setup simultaneously with
the active path thus ensuring that an LSP if set-up is quickly
restorable upon failure.

The incorporation of restoration leads to new QoS routing
problems. One possibility is to dynamically route both an ac-
tive path and a backup path in order to satisfy a request to
set-up a restorable bandwidth guaranteed LSP. Routing algo-
rithms for this scenario are presented in [10]. Simultaneous
routing of both paths ensures that sufficient resources will be
available upon failure for succesful LSP restoration. How-
ever, with this scheme the restoration actions of active path
failure detection and backup activation are peformed by the
source node. Delays entailed in propagation of failure infor-
mation to the source node may preclude this scheme, known
as path restoration, from achieving restoration times compa-
rable to the 50 ms restoration associated with SONET rings.

When MPLS restoration times must be comparable to
SONET restoration times, the proposed MPLS fast restora-
tion mechanism [1] is a faster alternative to path restoration
from the source. In this paper, we use the more representa-
tive term local restoration instead of fast restoration. Local
restorability means that upon a link or node failure, the first
node upstream from the failure must be able to switch the
path to an alternate preset outgoing link so that path continu-

376 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

ity with bandwidth guarantees is restored by a strictly local
decision. Local restoration implies that to successfully route
a path set-up request an active path, and a bypass backup path
for every link and node used by the active path must be de-
termined . This QoS routing problem of on-line routing of
locally restorable bandwidth guaranteed paths has not been
well studied.

In this paper, we present new algorithms for this problem
of setting up locally restorable bandwidth guaranteed tunnels.
Since we are focusing on the MPLS application, we use the
terms LSP and tunnels synonymously in the rest of the paper.
We concentrate on bandwidth routing because this is the most
likely traffic engineering use for setting up QoS guaranteed
paths. If QoS constraints such as delays and losses are to be
incorporated in service level agreements (SLA), one way of
accomodating this, given the traffic descriptor and SLA, is to
convert such an SLA into an effective bandwidth requirement
for the LSPs (with the queueing delays and losses primar-
ily restricted to the network edges) which can then be routed
through the MPLS network as a constant-bit-rate stream en-
countering only negligible or predictable queueing delays in
the MPLS core network. Routing taking delay and loss met-
rics directly into account is difficult computationally and re-
quires information difficult to acquire such as nodal load ver-
sus delay characteristics. The problem is further compounded
when backup paths have to routed as well.

Note that an approach essentially similar to routing
of bandwidth guaranteed paths can be used for dynamic
wavelength-path set-up in optical networks (particularly when
wavelength conversion is permitted at each optical crosscon-
nect). Here a wavelength can be thought of as the outermost
(non-stackable) label in the MPLS label stack. These func-
tional similarities between setting-up wavelength switched
paths and setting-up MPLS label-switched paths have been
pointed out in [2] as a basis for integrating the optical layer
control plane and Multi Protocol Label Switched (MPLS)
control plane (as also the fact that integration permits more
efficient network resource allocation). Given these similari-
ties and the possible standardization effort toward integrated
control protocols [2], we present our routing algorithms in a
more general setting and use the term LSP to denote either a
bandwidth-guaranteed MPLS label-switched path or a wave-
length (lambda) switched path. The rest of the paper discusses
LSP routing, with LSPs as defined above. Our algorithms
can be used for routing wavelength paths in optical networks
as well as for routing bandwidth-guaranteed label-switched
paths. The restoration feature is particularly important in op-
tical networking.

A. Online Routing

Since we are interested in dynamic routing of LSPs,
we cannot use offline algorithms that assume that all the
restorable demands that are to be routed are known a priori
or assume that any number of existing LSPs can be rerouted

to accommodate a new LSP. Instead, the LSP requests that ar-
rive one-by-one have to be routed by an on-line algorithm that
routes both the active path and the backup path for each link
or node while meeting the service provider traffic engineering
requirement of optimizing network resource utilization so as
to increase the number of potential future demands that can
be routed.

We assume that requests for LSP set-up arrive one at a time.
Each request has an ingress node, an egress node and an as-
sociated bandwidth (for wavelength switched paths, the band-
width is just the wavelength capacity or unit bandwidth if all
wavelengths have identical capacity). For every request, the
objective of the routing algorithm is to compute an active path
and a backup path for each node or link used by the active
path. If sufficient bandwidth is not available to set up either
the active path or the backup paths then the connection set-up
request is rejected.

We only consider the case of protection against single link
(node) failures. This is because the backup path is likely to
be used only for a short time until a new active path is set-up.
Secondly, protection against multiple failures requires multi-
ple backups and this is too expensive in backup resource re-
quirements.

II. RESTORATION OPTIONS AND FEATURES

We discuss in more detail some of the features of dif-
ferent restoration models relevant to problem considered in
the paper. We first contrast local versus end-to-end or path
restoration. We then discuss the failure modes that we protect
against and the information about the network that the algo-
rithm needs.

A. Restoration Model

As mentioned before, two options for restoration are end-
to-end or path restoration and local restoration. In the case
of end-to-end restoration, the idea is to provide a backup path
from the source to the destination for each request. This
backup path is (link or node) disjoint from the active path.
However the drawback with this approach is that when there
is a link or node failure, this information has to propagate back
to the source which in turn switches from the active to the sec-
ondary path for all the demands that use the link. Note that the
link failure information has to be potentially propagated to all
nodes in the network. End-to-end restoration along with the
information transfer on failure is illustrated in Figure 1 and in
Figure 2.

As noted before, the time taken for this information prop-
agation to the source may not be acceptable for many appli-
cations. Therefore we consider a local restoration model. In
the case of local restoration, the backup paths are preset lo-
cally and therefore failure information does not have to prop-
agate back to the source before connections are switched to
the backup path.

377 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

t

Primary Path

Backup Path

s

Fig. 1. Paths for End-to-End Restoration

tFailure

Information transfer
back to sourceFlow setup

on backup
path

s

Fig. 2. Information Transfer on Link Failure

B. Failure Modes

We consider two different failure modes that we protect
against. The first is against single link failures. In this case,
we have to protect the active path against all single link fail-
ures. The second is the single element (node or link) failures.
The amount of resources needed to provide backup for the
second mode will be greater since a node failure results in
multiple link failures. In terms of detecting failures, we as-
sume the following: In the single link failure model, when a
link fails, the two nodes that are at the end point of the link
know that the link has failed and they immediately switch all
the demands that go on this link to the alternate path. Note
that when a node fails, all the links incident on this node fail
and in this case the backup path designed to protect against
link failures may also fail. In the single element failure model,
when a node fails we assume that all the link interfaces at that
node fail and therefore all links that are incident on the node
fails. This is detected as in the link failure case and the de-
mands are routed across the failed node. Note that in the case
of single element failures, there has to be a backup path for
every node, instead of every link, traversed by the active path.
We do not provide a backup if the source or the destination
of the traffic fails. Taking care of single node failures almost
handles all the link failures also except for the last link on the
active path. This is illustrated in Figure 3. Therefore for the
single element failure case, we protect against all single node
failures and the failure of the last link.

t
s

a

l m

Backup path for
the failure of node a
and links l and m.

p

Backup path for

the failure of link p

Fig. 3. Backup Path for Single Element Failure

C. Backup Paths

For the single link failure case, the backup path for a link
(i; j) can be any path connecting nodes i and j that does not
include link (i; j). This backup path for link (i; j) can include
any link including any links on the active path for the current
demand (apart from link (i; j)), as well as any links that are
used in the backup path for other active links for this demand.
For single element failures, the backup path for the failure
of node k involves doing the following: First determine the
links (j; k) and (k; l) in the active path. If node k fails, then
it will result in the failure of all links incident on node k, in
particular link (j; k). Therefore the failure will be detected at
node j and if there is an alternate path from node j to node
l (or some other node between l and the destination t) then
node j can divert traffic along this backup path. Note that the
backup path for the failure of node k has to avoid all links
incident on node k.

D. Sharing Backup Links

Clearly, capacity on the active path cannot be shared. How-
ever, the capacity in the backup path can be shared in two
ways: Inter-demand sharing and intra-demand sharing. Inter-
demand sharing refers to sharing of the backup bandwidths
belonging to different demands whose active paths are link
disjoint. For example, if two equal demands between a given
source and destination do not share any links in common on
the active path, then the backup path for these two demands
can be shared completely. This is an extreme case. However,
even if the two demands on the primay path share some links
in common, it may still be possible to share capacity on the
backup path.

Intra-demand sharing is illustrated using Figure 4. In the
figure note that link (8; 4) is used to backup links (2; 3) and
(3; 4). This means that backup capacity is shared on this link
for backups belonging to the same demand and is an example
of intra-demand sharing. The algorithms that we develop ex-
ploit both inter-demand and intra-demand sharing in order to
minimize the amount of bandwidth used. Figure 5 illustrates
sharing backups for the single element failure case.

The amount of sharing that is achievable depends on the
amount of link-usage information that is available to the rout-
ing algorithm. We discuss this next.

378 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

tFailures 2 3

4

5 6
7

8
9

10
12

s-2 s-5-6-2

2-7-8-4
3-8-4

2-3
3-4
4-t 4-9-10-12-t

Primary
Arc

Information flow

Backup
Path

Fig. 4. Forward and Backup Path for Single Link Failure

Node 2 s-5-6-3
Node 3 2-6-7-8-4
Node 4 3-7-8-9-t

Link 4-3 4-9-10-12-t

Path
Backup

ts 2 3

4

5 6
7

8
9

10
12

Information flow

Failure

Fig. 5. Forward and Backup Path for Single Element Failure

E. None, Complete, and Partial Information for Routing

The first scenario that we consider is what we call the no
information case. In this scenario, we assume that the only
information that the routing algorithm has about the network
is the residual (available) bandwidth on each link. The resid-
ual bandwidth is defined as the difference between the link
capacity and the amount of bandwidth already taken by the
active and the backup paths traversing the link. This informa-
tion is obtainable from routing protocol extensions similar to
those in [4], [9], [12]. However, note that in this scenario, for
each link the amount of bandwidth utilized separately by the
active and the backup paths is not known. Only the total used
bandwidth is known.

In the second scenario, we assume that that the routing al-
gorithm has complete information, i.e, it knows the routes for
the the active and backup paths of all the connections cur-
rently in progress. This is too much information to make it
feasible for availability via routing protocol extensions. If
routing is done in a centralized manner this information can
be maintained by the routing algorithm. However, if the com-
putation is distributed, then it would be very difficult to dis-

seminate this information to all the nodes. The amount of in-
formation needed for the complete information model is very
large.

In the third partial information scenario, the information
available to the routing algorithm is slightly more than that
in the no information scenario. The additional information
in this scenario is that for each link instead of knowing only
the total bandwidth usage, we now separately know the total
bandwidth used by active paths, and the total bandwidth used
by backup paths. This incremental information is very use-
ful and it is possible to disseminate it in a distributed manner.
It is feasible to obtain this information from traffic engineer-
ing extensions to routing protocols provided the backup and
active paths are grouped into separate classes for which link
bandwidth usage is distributed.

In the first no information scenario, it is not possible to do
any inter-demand sharing of the backup paths since the rele-
vant information on backup bandwidth usage is not available.
Intra-demand sharing is still possible since the source node
has the backup bandwidth usage information for the current
demand. The second complete information scenario permits
the best sharing but is not always practical. So it is mainly
useful only for comparison purposes. The third partial infor-
mation scenario is fairly modest in terms of the amount of
information to be maintained. Because only aggregate infor-
mation is needed and no per-LSP information is needed it is
easy to maintain and use this information in a distributed fash-
ion. Therefore on-line routing of bandwidth guaranteed active
and backup paths for local restoration under the partial infor-
mation model is the main focus of this paper.

III. PROBLEM DEFINITION

We consider a network of n nodes (switches/routers) andm
links. All the links are assumed to be directional. Each band-
width demand arrives at a route server or edge-router which
determines the explicit-route for the active and the backup
paths for that demand. The request either arrives directly to
the route server or may first arrive at an ingress node which
then queries the route server to generate the explicit route.
We leave out the details of protocols that may be used for
this interaction for the sake of conciseness. The explicit route
is then communicated back to the ingress router which then
uses a signaling mechanism such as PNNI in ATM networks
or RSVP/CR-LDP in IP/MPLS networks to set-up the path
to the egress and to reserve bandwidth on each link on the
path. We consider the request for tunnel k to be defined by
a triple (ok; tk; bk). The first field ok, specifies the ingress
router, the second field tk specifies the egress router and the
third bk specifies the amount of bandwidth required for tun-
nel k. For each tunnel request, an active path and a set of
backup paths have to be set up. In the single link failure case,
we assume that there will be local restoration on any single
link failure in the network. In the single element failure case,
there will be local restoration in the case of single link or sin-
gle node failure. If we determine that there is not sufficient

379 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

bandwidth in the network to either set up the active path or
any of the backup paths for a tunnel request, then this request
is rejected. In [10], the restoration model, is to have a backup
path between the source and the destination of the demand
that is disjoint from the active path. In this paper we consider
the case where the restoration has to be local, i.e., the switch
to a bypass backup path has to be done at the first upstream
node and not at the source node.
Tunnel requests are assumed to come one at a time. For ease
of notation, assume that the current tunnel request is for b
units of bandwidth between source node s and destination
node t. If this tunnel request is accepted, then note that all
links on its active path will reserve b units of bandwidth for
this tunnel.

We would like to determine the amount of sharing that can
be achieved under the different information scenarios. To-
wards this end we define the following notation. Let Aij rep-
resent the set of demands that use link (i; j) in their active
paths and Bij represent the set of demands that use link (i; j)
for backup. Let Fij represent the total amount of bandwidth
reserved for the demands that use link (i; j) on the active path.
Let Gij represent the total amount of bandwidth reserved for
backup by links whose backup paths use link (i; j).

Fij =
X
k2Aij

bk

and
Gij =

X
k2Bij

bk:

Let Rij = Cij � Fij �Gij represent the residual bandwidth
of link (i; j) which is all that is known in the no informa-
tion case. For the complete information case we assume that
each node knows the sets Aij and Bij for all links (i; j) in
the network. In the partial information case we assume that
each node knows the value of Fij ; Gij and Rij for all links
(i; j) in the network. Since we do not have any knowledge
of the demands that will arrive in the future, the objective of
the routing algorithm is to determine the active and backup
path for the current tunnel request that “optimizes” the use of
network infrastructure. One reasonable objective then is to
minimize the sum of the bandwidths that is used by the active
and the backup paths. If no resoration is needed, i.e., we just
have to determine one path, this bandwidth minimization ob-
jective leads to min-hop routing. As stated earlier, the amount
of sharing that can be achieved on the backup path is a func-
tion of how much information is known about the routing of
demands that are currently active in the network.

IV. KEY IDEAS IN THE ALGORITHM DESIGN

Some of the restoration problems posed in the previous
section can be formulated as integer programming problems.
Apart from using general purpose solvers there does not seem
to be any easy way to solve these integer programming prob-
lems. Therefore we design a heuristic algorithm to solve the

restoration problem. In this section, we outline the key ideas
used to the developed algorithm. In the next section we give
a formal description of the algorithm.

First we consider the single link failure case, ignoring the
intra-demand sharing of backup bandwidth, under the partial
and complete information models. Analysing this case gives
us the overall design of the algorithm. If link (i; j) is used in
the active path, then there has to be a backup path bypassing
link (i; j) so as to backup any failure of this link. Note that the
backup path has to start at node i but can terminate at any node
between node j and the destination t on the active path. For
now we ignore this, and consider the case where the backup
path for link (i; j) has to start at i and terminate at node j.
In this case, the overall bandwidth needed when link (i; j) is
used in the active path is the sum of the bandwidth for using it
in the active path and the bandwidth used for backing up the
link. The bandwidth needed if link (i; j) is used on the active
path is b. The bandwidth needed to backup up link (i; j) can
be computed as the shortest path from node i to node j after
removing link (i; j).

The cost of the links depends on the information model
used. In the case where there is complete information, the
sets Aij and Bij are known for all links (i; j). Since we are
assuming robustness under single link failures, it is possible
to share backup paths between demands whose active paths
do not share the same link. In order to formulate this prob-
lem, we first define the quantity �uvij for each link pair (i; j)
and (u; v). This quantity �uvij is the cost of using link (u; v)
on the backup path if link (i; j) is used in the active path.
In order to compute the value of �uvij we first define the set
�uvij = Aij \ Buv. This is the set of demands that use link
(i; j) on the active path and link (u; v) on the backup path.
Let the sum of all the demand values in the set �uvij be repre-
sented by �uvij =

P
k2�uv

ij
dk. Recall that the current demand

is for b units of bandwidth between nodes s and d. Now �uvij
is defined as follows:

�uvij =

8>>>>>><
>>>>>>:

0 if �uvij + b � Guv

and (i; j) 6= (u; v)
�uvij + b�Guv if �uvij + b > Guv and

Ruv � �uvij + b�Guv

and (i; j) 6= (u; v)
1 Otherwise

If we consider the case where only partial information is
available then the cost of link (u; v) is given by

�uvij =

8>>>><
>>>>:

0 if Fij + b � Guv and
(i; j) 6= (u; v)

Fij + b�Guv if Fij + b > Guv and Ruv �
Fij + b�Guv and (i; j) 6= (u; v)

1 Otherwise

This is based on the observation that

�uvij � Fij 8(i; j) 8(u; v):

380 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

Note that since links (i; j) and (u; v) cannot be on both the
active and the backup paths, the value of �uvij is set to infinity
if (i; j) = (u; v). The quantity �uvij represents the amount of
backup capacity on link (u; v) that is needed backup already
routed demands that use link (i; j), and hence the amount that
cannot be used to backup the current demand if it too were
to use link (i; j) in the active path. If �uvij + b � Guv then
note that the current demands can be backed up on link (u; v)
without reserving any additional bandwidth. For the partial
information scenario, since �uvij is not known to the routing al-
gorithm, we use Fij as a conservative approximation for �uvij .

Next we determine the cost of using link (i; j). This cost
is the sum of the cost of using link (i; j) on the active path
and the cost of its bypass path. To determine the cost of by-
passing link (i; j), we compute the shortest path from i to j

(excluding link (i; j)) where the cost of each link (u; v) in the
path is given by �uvij . Let the length of this shortest path be-
tween i and j be �ij . Then the cost of using link (i; j) on the
active path is b + �ij , i.e., the sum of the bandwidth usage
on link (i; j) and bandwidth usage for bypass of link (i; j).
Once usage costs are associated with each link in the network
(using a total of m shortest path computations), we now com-
pute the shortest path between s and t using b+�ij as the cost
of link (i; j). This gives the minimum amount of bandwidth
without intra-demand sharing taken into account. Therefore
we totally solve m + 1 shortest path problems. This leads to
the first design idea: The cost of backup paths can be deter-
mined by solving shortest path problems, one for each link in
the network.

In the above discussion, we ignored the fact that the backup
path for link (i; j) starts at i but can end at any node on the
path from j to t (including j and t). Handling this case is
facilitated by executing the shortest path algorithm backwards
from the destination to the source.

s

k

j

Potential backup
paths for link (k,l)

Links in the current

shortest path tree

Last permanently

labeled node

l m

t

Fig. 6. Computing Backup Cost

This facilitation is illustrated by Figure 5 which shows a
step in the backwards execution of the algorithm. The dark
lines in the graph represent the shortest path tree when Dijk-
stra’s algorithm is executed backwards from the destination.
For every node that is permanently labeled in the shortest path
tree there is a unique path from that node to the sink. Consider
a node k that is permanently labeled when we are constructing

the shortest path tree from the sink. Associated with node k
is the path P (k) = fl;m; tg along the shortest path tree from
node k to the destination. Consider link (k; j) in the network.
The cost of using link (k; j) in the active path is the sum of
bandwidth currently being routed and the cost of backing up
link (k; j). The dotted lines in Figure 5 illustrate three dif-
ferent paths to backup link (k; j). In the last section, the cost
of backing up link (k; j) was computed as the shortest path
from k to j with �uvkj as the cost of link (u; v). Now instead
of computing the shortest path from j to k we compute in-
stead the shortest path from k to any node in P (k). This can
be done easily by running Dijkstra’s algorithm from j using
�uvjk on link (u; v), and terminating the algorithm when any
node in the set P (k) is permanently labeled by the algorithm.
This examples illustrates the reasoning leading to the second
design principle: It is necessary to execute the shortest path
(Dijkstra’s) algorithm backwards starting at the sink.

To derive the next key idea, we consider the single link fail-
ure case where we also take into account intra-demand shar-
ing of backup bandwidth. Intra-demand sharing of bandwidth
occurs when the link (i; j) uses link (u; v) for a backup and
reserves a bandwidth of w on link (u; v). When some other
link (k; l) on the active path wants to use link (u; v) for its
backup then, in addition to any inter-demand sharing it can
use the already reserved bandwidth of w for free. Recall that
the shortest path algorithm is to be run backward from the
destination. In order to keep track of how much bandwidth
is reserved at each link, we introduce a m-vector �u corre-
sponding to node u in the network. (Recall that the number of
links in the network is m.) �uij represents the amount of band-
width reserved by the current demand for all the backup paths
for all the links leading from node u to the destination t. This
bandwidth reservation for the current demand can be used to
save bandwidth, by intra-demand sharing, when backing up
the links from u to the source s that are yet to be determined.
Consider the case where the backup path for link (k; j) is be-
ing determined. Assume that the shortest path is being deter-
mined in the backward direction from node j to node k. The
m-vector �j represents the reservation made for this demand
for all the backup path from node j to the sink. This path is
known since there is a unique path from node j to the sink in
the shortest path tree. Consider a link (m;n) in the network.
Define

�mn = Fkj + b�Bmn � �jmn:

Then the cost of link (m;n) when determining the shortest
backup path is given by

lmn =

8>><
>>:

0 if �mn � 0
�mn if 0 � �mn � b and Rmn � �mn and

(m;n) 6= (k; j)
1 Otherwise

The cost in the case of the complete information case can also
be modified similarly. Therefore the above procedure gives us
a method for accounting for the intra-demand sharing. This

381 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

gives the third design principle: Maintaining the m-vector at
each node that gives us the amount of bandwidth reserved
for the current demand for backing up all links from the the
given node to the destination can be used to account for intra-
demand sharing.

To get node bypass paths, the procedure is almost the same
as the edge bypass path case. There are two main differences.
The first is that when we want to determine the cost of in-
cluding link (i; j) in the active path, we have to determine
the cost of finding a backup from node i to the successor of
node j without using any of the links incident on node j. Of
course when the algorithm is run backwards from the sink,
the successors of all the nodes that are permanently labeled
by Dijkstra’s algorithm are already known since a path has
been established from that node to the destination. The sec-
ond important difference is that when a node fails, all the links
incident on the node fails. Therefore the cost of the backup
has to account for all the links failing simultaneously. We
only consider the outgoing links from the node. For example,
when computing the cost of using link (i; j) in the active path,
we have to consider the cost of backing up demands that use
link (j; l) for l 2 V . Therefore the cost of all links (without
considering intra-demand savings) have to be modified as fol-
lows.
Cost of using link (u; v) for complete information case:

�uvij =

8>>>>>>>><
>>>>>>>>:

0 if
P

(j;k)2E �uvjk + b �

Guv and (i; j) 6= (u; v)P
(j;k)2E �uvjk + b�Guv if

P
(j;k)2E �uvij + b > Guv ,

Ruv �
P

(j;k)2E �uvjk
+b�Guv and
(i; j) 6= (u; v)

1 Otherwise

Cost of using link (u; v) for partial information case:

�uvij =

8>>>>>><
>>>>>>:

0 if
P

(j;k)2E Fjk + b � Guv

and (i; j) 6= (u; v)P
(j;k)2E Fjk + b�Guv if

P
(j;k)2E Fjk + b > Guv

and Ruv � Fij + b�Guv

and (i; j) 6= (u; v)
1 Otherwise

The next algorithm design idea is then the follwing: Modi-
fying the cost of the links in the computation of the backup
costs can be used to account for node failures. These ideas
are now integrated, and in the next section we give a formal
description of the algorithm.

V. FORMAL DESCRIPTION OF THE ALGORITHM

In this section we describe the algorithm for the sin-
gle link failure case in the partial information case. The
modifications that have to be made for the other cases
are straightforward as outlined in the preceding section.

LOCAL EDGE DISJOINT(s, t)

� INITIALIZATION
1: Reverse all links in the network.
2: T = V; P = ;; �t = 0; �j =1 8j 6= t

�dmn = 0 8(m;n) 2 E; Q(t) = ;:
� ITERATIVE STEP
2: k = Argminj2T �j : If k = s go to Step 6.
3: T = Tnfkg and P = P [fkg.
4: For each j 2 T; (k; j) 2 E

wkj = ALT PATH COST(k; j)
if (�j � wkj + �k)

�j = �k + wkj
Q(j) = k

5: Go to Step 2.
� TERMINATION
6: Exit.

Let s 2 V represent the source and t 2 V represent the
destination. Let (i; j) 2 E denote a directed edge (link)
in the graph. Let d represent the current demand size. Let
Fij ; Bij and Rij represent the total amount of active band-
width, backup bandwidth and residual capacity on link (i; j).
We use repeated invocations of Dijkstra’s algorithm to gener-
ate the path. In the description of the algorithm given below
the following notation is used. This is a summary of the nota-
tion for all the three routines that are used. T and T 0 represent
the set of temporarily labeled nodes and P and P 0 the set of
permanently labeled nodes. The node labels during the exe-
cution of Dijkstra’s algorithm will be represented by � and .
We use node sized vectorsQ andQ0 to represent the predeces-
sor array along the shortest path tree. With nodeu in the graph
we associate an arc length array �u where �uij represents that
amount of bandwidth reserved on link (i; j) for the current
demand on all the links on the path from node u to the desti-
nation t. All invocations of Dijkstra’s algorithm will be from
the destination node. Therefore at any given point in the al-
gorithm, for any permanently labeled node u there is a unique
path from u to the destination t and hence the value of �u is
known for any permanently labeled node. We use a link length
array � to temporarily store the value of u. The main routine
that we use is the LOCAL EDGE DISJOINT(). This routine
calls the routine ALT PATH COST() which determines the
cost of providing a link with a local backup. This is done
via several invocations of SHORT PRED PATH(). The rea-
son for multiple invocations of SHORT PRED PATH() is the
fact that the backup path for a link can terminate at any point
on the path from that link to the destination. Since the amount
of intra-demand saving is a function of the node where the
backup path ends, the shortest path algorithm has to be exe-

382 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

cuted from each node in the path from the current link to the
destination. Note that both LOCAL EDGE DISJOINT() as
well as SHORT PRED PATH() are modified versions of Di-
jkstra’s algorithm.

ALT PATH COST(k, j)

� INITIALIZATION
1: u = k; MIN =1:

� ITERATIVE STEP
2: If u = ; go to Step 6.
3: � = SHORT PRED PATH (k; u; j).
4: if (� � MIN)

MIN = �

�jmn = �mn 8(m;n) 2 E

5: u = Q(u) Go to Step 2.
� TERMINATION

6: Exit.

SHORT PRED PATH(k, u, j)

� INITIALIZATION
1: �mn = Fkj + b�Bmn � �umn 8(mn) 2 E:
2:

lmn =

8>><
>>:

0 if �mn � 0
�mn if 0 � �mn � b and Rmn �

�mn and (m;n) 6= (k; j)
1 Otherwise

3: T 0 = V; P 0 = ;; u = 0; j =1 8j 6= u

�dmn = 0 8(m;n) 2 E

� ITERATIVE STEP
4: w = Argminj2T !j : If w = k go to Step 9.
5: T 0 = T 0nfwg and P 0 = P 0 [fwg.
6: For each i 2 T 0; (w; i) 2 E

if (i � lwi + w)
i = w + lwi
Q0(i) = w

7: Go to Step 2.
� TERMINATION

8: Set �mn = �umn 8(mn) 2 E, if arc (mn) is on the
shortest path from u to j set �mn = �umn + lmn.

9: Exit.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our locally
restorable routing algorithm that uses only aggregate infor-
mation. We also evaluate the performance obtained using the
three information models. The experimental set up is the fol-
lowing: We performed experiments on a graph with 15 nodes
and 56 links. The test network is shown in Figure 7 below.
Each undirected link in Figure 7 represents two directed links.
For the first set of experiments, the capacity of the links are set
to infinity. For the second set of experiments, the light links
have a capacity of 12 units in each direction and the dark links
have a capacity of 48 units in each direction. The objective of

1

2

4

8

10

6

5

13

14

12

15

11

9

7

3

Fig. 7. Test Network

the experiment is to determine the amount of bandwidth sav-
ings that we (aggregated) can get by just using partial infor-
mation. We study the performance of restoration algorithms
for the following scenarios:

1. End-to-end restoration with partial information (SPI).
For this case, we use the algorithm presented in [10].

2. Local restoration for single link failure with no informa-
tion (LLNI).

3. Local restoration for single link failure with partial in-
formation (LLPI).

4. Local restoration for single link failure with complete
information (LLCI).

5. Local restoration for single element failure with no in-
formation (LENI).

6. Local restoration for single element failure with partial
information (LEPI).

7. Local restoration for single element failure with com-
plete information (LECI).

We measure the effectiveness of the different schemes by do-
ing two experiments.

A. Network Loading Experiments

In the first experiment, the capacity of the links are set to
infinity. Demands arrive one at a time to the network. The
source and the destination nodes are picked up at random from

383 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

among the nodes in the network. The bandwidth is uniformly
distributed between 1 and 6 units. Each demand has to be al-
located an active path which is restorable. For restorability,
the backup is either an end-to-end path backup, or is a set of
node or link bypass paths depending on whether the failure
protection is against single element or single link failres. For
the no information case, only the residual bandwidth of each
link is known to the routing algorithm. For the partial infor-
mation case, we separately know the total bandwidth used by
active paths, the total bandwidth used by backup paths, and
the residual bandwidths on each link. With complete informa-
tion, we know the routes for the the active and backup paths
of all the connections currently in progress.

The objective of the first set of experiments is to determine
the bandwidth efficiency for the different scenarios. After 50
demands have been loaded on to the network, the total amount
of bandwidth consumed by the demands (for both active and
backup) is determined for each of the information models. We
performed 10 experiments with different random seeds. Fig-
ure 8 shows the performance of the three different information
models in the different information models for the single link
failure case and Figure 9 shows the same results for the single
element failure case. Clearly having complete information is
useful. However, the practical case of having partial infor-
mation is also useful and the incremental information about
active and backup path usage clearly improves performance
in comparison to the no information case where only residual
bandwidths are available. Comparing the bandwidth usage in
the two figures, it is evident that the penalty for protection
against element failures is not prohibitively high. Hence, lo-
cal restorability against single element failures using partial
information is the most appealing case.

Since the partial information case is the most appropriate
for distributed implementation we compare the partial infor-
mation case for end-to-end restoration, single link failure and
the single element failure cases in Figure 10.

EXPERIMENT NUMBER

T
O

T
A

L
A

M
O

U
N

T
 O

F
 B

A
N

D
W

ID
T

H
 U

S
E

D

2 4 6 8 10

40
0

60
0

80
0

10
00

LLCI
LLPI
LLNI

Fig. 8. Total amount of bandwidth consumed after 50 demands for the single
link failure backup case

EXPERIMENT NUMBER

T
O

T
A

L
A

M
O

U
N

T
 O

F
 B

A
N

D
W

ID
T

H
 U

S
E

D

2 4 6 8 10

60
0

80
0

10
00

12
00

LECI
LEPI
LENI

Fig. 9. Total amount of bandwidth consumed after 50 demands for the single
element failure backup case

EXPERIMENT NUMBER

T
O

T
A

L
A

M
O

U
N

T
 O

F
 B

A
N

D
W

ID
T

H
 U

S
E

D

2 4 6 8 10

50
0

60
0

70
0

80
0

90
0 SPI

LLPI
LEPI

Fig. 10. Total amount of bandwidth consumed after 50 demands for the
partial information case

B. Experiments with dropped demands

The second set of experiments were performed to study the
behavior of the algorithms with respect to the number of de-
mands dropped when there is a overloading of the network.
In these experiments, the links have finite capacity. Demands
arrive one at a time. Each demand is uniformly distributed
between 1 and 6 units. The source and the destination for the
demands are picked at random. If there is no capacity for ei-
ther the active or the backup path, then the demand is assumed
to be rejected. We performed 10 experiments. We count the
number of rejected demands after 40 demands are loaded on
to the network. As in the case of the amount of bandwidth
consumed, Figure 11 shows the the number of rejected de-
mands (out of 40) for the single link failure backup case for
all the three information models, Figure 12 gives the same
plot for the single element failure case and Figure 13 gives
the number rejected under the partial information scenario for
the three different failure models. Again, we see that having

384 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

complete information yields the best performance, and that
having partial information gives a considerable performance
improvement over the no information model.

VII. CONCLUDING REMARKS

We considered a new QoS routing problem which requires
the on-line routing of a bandwidth guaranteed path along with
the setting up of bypass paths for every link or node traversed
by the primary active path. The bypass paths are used for fast
local restoration where upon a link or node failure, the first
upstream node re-establishes path continuity (with bandwidth
guarantees) by switching to the bypass path for the failed
node or link. The routing objective is to minimize the band-
width usage for each connection so as optimize use of net-
work resources while protecting against single node or link
failure. Bandwidth efficiency is achieved by exploiting the
potential for inter-demand and intra-demand backup band-
width sharing. We develop a new algorithm for this routing
problem which only uses aggregated link usage information
(total bandwidth consumed on each link by active paths, to-
tal bandwidth consumed on each link by backup paths, and
the residual bandwidths) that is easily obtainable by proposed
routing protocol extensions. We show that the algorithm per-
forms well in terms of the number of rejected requests and the
total bandwidth used. The main use of this algorithm is for
MPLS netowork routing and for wavelength routing in opti-
cal networks with wavelength conversion.

EXPERIMENT NUMBER

N
U

M
B

E
R

 O
F

 R
E

JE
C

T
E

D
 R

E
Q

U
E

S
T

S
 (

O
U

T
 O

F
 4

0)

2 4 6 8 10

5
10

15 LLCI
LLPI
LLNI

Fig. 11. Number of rejected demands out of 40 for the single link failure
backup case

REFERENCES

[1] D. O. Awduche, L. Berger, D. Gan, T. Li, G. Swallow, V. Srinivasan,
“Extensions to RSVP for LSP Tunnels”, Internet Draft draft-ietf-mpls-
rsvp-lsp-tunnel-04.txt, September 1999.

[2] D. O. Awduche, Y. Rekhter, J. Drake, R. Coltun, “Multi-Protocol
Lambda Switching: Combining MPLS Traffic Engineering Control
with Optical Crossconnects”, Internet Draft draft-ietf-awduche-mpls-
te-optical-00.txt, October 1999.

[3] R. Callon, N. Feldman, A. Fredette, G. Swallow, A. Viswanathan, “A
Framework for Multiprotocol Label Switching”, Internet Draft draft-
ietf-mpls-framework-03.txt, June 1999.

EXPERIMENT NUMBER

N
U

M
B

E
R

 O
F

 R
E

JE
C

T
E

D
 R

E
Q

U
E

S
T

S
 (

O
U

T
 O

F
 4

0)

2 4 6 8 10

5
10

15 LECI
LEPI
LENI

Fig. 12. Number of rejected demands out of 40 for the single element failure
backup case

EXPERIMENT NUMBER

N
U

M
B

E
R

 O
F

 R
E

JE
C

T
E

D
 R

E
Q

U
E

S
T

S
 (

O
U

T
 O

F
 4

0)

2 4 6 8 10

2
4

6
8

10
12

14

SPI
LLPI
LEPI

Fig. 13. Number of rejected demands out of 40 for the partial information
case

[4] R. Guerin, D. Williams, A. Przygienda, S. Kamat, A. Orda, “QoS Rout-
ing Mechanisms and OSPF Extensions”, Internet Draft draft-guerin-
qos-routing-ospf-04.txt, December 1998.

[5] R. Guerin, D. Williams, A. Orda, “QoS Routing Mechanisms and OSPF
Extensions”, Proceedings of Globecom 1997.

[6] R. Goguen, G. Swallow, “RSVP Label Allocation for Backup Tunnels”,
work in progess, Internet Draft draft-swallow-rsvp-bypass-label-00.txt,
October 1999.

[7] D. Haskin, R. Krishnan, R. Boyd, A. Hannan, “A Method for Setting
an Alternative Label Switched Paths to Handle Fast Reroute”, work
in progress, Internet Draft draft-haskin-mpls-fast-reroute-00.txt, June
1999.

[8] R. Krishnan, D. Haskin, “Extensions to RSVP to Handle Establishment
of Alternate Label-Switched-Paths for Fast Reroute”, work in progress,
Internet Draft draft-krishnan-mpls-reroute-resvpext-00.txt, June 1999.

[9] D. Katz, D. Yeung, “Traffic Engineering Extensions to OSPF”, work in
progress, Internet Draft, 1999.

[10] M. Kodialam, T. V. Lakshman “Dynamic Routing of Bandwidth Guar-
anteed Paths with Restoration” Proceedings of Infocom 2000, March
2000.

[11] S. Makam, V. Sharma, K. Owens, C. Huang, “Protection/Restoration of
MPLS Networks” work in progress, Internet Draft draft-makam-mpls-
protection-00.txt, June 1999.

[12] H. Smit, T. Li, “IS-IS Extensions for Traffic Engineering”, work in
progress, Internet Draft, 1999.

385 IEEE INFOCOM 2001

